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1 Type classification

1.1 Typical CFD problem

Figure 1.1: Sequence to solve a typical CFD problem.

The sequence to solve a typical CFD problem (or any engineering prob-
lem) is shown in Fig. 1.1:

1. physical problem: geometry, etc. based on experiments, experience,
requirements.

2. physical model: approximation, which equation to use, ρ, µ, Ma, ...

3. mathematical model: PDE, BC, etc.

4. discretisation: method to use, FD

5. solution scheme, programming

6. calculation on a computer (see for instance www.top500.org)

7. validation, error analysis, postprocessing.

In particular the last step, i.e. the careful analysis of the results, might indi-
cate changes in the setup, the equations, resolution etc. Already discussed:
Steps 1-2 (Fluid Courses)

Now: steps 3-4



model equations

classification, (math & physical)

discretisation with FD

Later: Steps 5-7 (homeworks, project)

www.top500.org
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1.2 Model equations and classifications

• Solutions to different kinds of problems or equations behave differently.

• Choice of the numerical method depends on the equation to solve.

• Number, type and location of boundary conditions (b.c.) and initial
conditions (i.c.) dependent on problem.

Definition 1.1 Well-posedness: (Hadamard 1902, natural problems) A
system of PDEs and b.c./i.c. is a well-posed problem if:

1. a solution exists,

2. the solution is unique,

3. the solution depends continuously on the boundary and initial condi-
tions.

Point 3 depends on the type of PDE.
A solution to a problem that is not well-posed (ill-posed) does not make
sense and should not be attempted at all. �

Example 1.1 Backward heat equation: Consider the following PDE
which is the normal heat equation with inverted sign for the diffusive term,

∂u

∂t
= −ν ∂

2u

∂x2
ν > 0 . (1.1)

The solution of this equation leads to unbounded amplification of errors (see
also Section 4.3), and is thus not well posed (violates point 3). �

1.3 Classification of PDEs

System of linear, first order PDEs of two variables x, y with n unknowns
u1, ..., un,

A
∂u

∂x
+ B

∂u

∂y
= c . (1.2)

Assume a curve f(x, y) = 0 in the two-dimensional (x, y) plane with specific
parametrisation s, as shown in Fig. 1.2:

x = x(s) , y = y(s) (1.3)

Total derivative:
du

ds
=
∂u

∂x

dx

ds
+
∂u

∂y

dy

ds
(1.4)

Choose s ≡ x :
du

dx

∣∣∣
f

=
∂u

∂x
+

dy

dx

∣∣∣
f

∂u

∂y
(1.5)
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Figure 1.2: Curve f(x, y) with derivatives.

The system (1.2) becomes when eliminating ∂u
∂x :(

B − λA
) ∂u
∂y

= −Adu

dx
+ c (1.6)

with the slope of the curve f

λ =
dy

dx

∣∣∣
f
. (1.7)

We look for specific curves f , for which in their neighbourhood the evolution

of u along f is not sufficient to determine the complete u, i.e. knowing du
dx

∣∣∣
f

is not enough to compute ∂u
∂y :

det(B− λA) = 0 , (1.8)

or λ being an eigenvalue of Ba = λAa. These specific curves f(x, y) = 0
with λ = dy

dx are called characteristics of the system (1.2).
The solution might have discontinuities across characteristics. On the

other hand, information propagates along characteristics. Typically, along
characteristics, a simpler equation (reduced order) holds (⇒ method of char-
acteristics).

Definition 1.2 Type of partial differential equation: Depending on
the eigenvalues λ, we call the type of the linear system of PDEs (1.2):

a hyperbolic if n real eigenvalues and n linearly independent eigenvectors
a exist,

b parabolic if n real eigenvalues and less than n linearly independent
eigenvectors exist,

c elliptic if n complex (non-real) eigenvalues exist, or

d mixed type if real and complex eigenvalues exist.

�
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Example 1.2 Prandtl–Glauert equation:

(1−M2
∞)

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (1.9)

This equation describes the 2D, inviscid, linearised, compressible steady flow
over a thin (streamlined) body, see Fig. 1.3. M∞ is the Mach number

Figure 1.3: Flow over a thin body as considered in the Prandtl–Glauert
equation.

M∞ =
u∞
c∞

, (1.10)

with the speed of sound c∞ and the velocity potential

u =
∂φ

∂x
v =

∂φ

∂y
. (1.11)

One can re-write the original system as{
(1−M2

∞)ux + vy = 0

uy − vx = 0 ,
(1.12)

where the second equation comes from φxy = φyx (equality of mixed par-
tials). In more compact form we get

u =

(
u
v

)
A =

(
1−M2

∞ 0
0 −1

)
B =

(
0 1
1 0

)
, (1.13)

so that the eigenvalue problem

Ba = λAa (1.14)

has the solution

λ1,2 = ±
(√

M2
∞ − 1

)−1
(1.15)

and
a1/2 = (1,±

√
M2
∞ − 1) . (1.16)

For subsonic flow (M∞ < 1), the type is elliptic as the eigenvalues are com-
plex. For supersonic flow (M∞ > 1), it is hyperbolic as the eigenvalues are
real and the eigenvectors distinct. For M∞ = 1 the equation is parabolic.
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Figure 1.4: Hyperbolic solution to the Prandtl–Glauert equation.

This is an example of an equation that changes type depending on parame-
ters (in this case the Mach number, which could even change locally). Note
that the time-dependent problem is always hyperbolic.

In the hyperbolic case, M∞ > 1 and shown in Fig. 1.4, we can define the
angle µ as

sinµ = 1/M∞ ⇒ λ1/2 = ±
(√

M2
∞ − 1

)−1
= ± tanµ . (1.17)

These characteristics are also called Mach lines. �

Extension: Linear PDE of the second order:

E
∂2u

∂x2
+ F

∂2u

∂x∂y
+G

∂2u

∂y2
+H = 0 (1.18)

with λ = dy
dx

∣∣∣
c
:

Eλ2 − Fλ+G = 0 (1.19)

• hyperbolic if two real characteristic:

F 2 − 4EG > 0 (1.20)

• parabolic if one real characteristic:

F 2 − 4EG = 0 (1.21)

• elliptic if complex characteristics:

F 2 − 4EG < 0 (1.22)

1.3.1 Elliptic equations

Elliptic problems are typically steady diffusion processes, with no march-
ing properties (neither in space nor in time). The most prominent model
equations are the Laplace and Poisson equations.
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Figure 1.5: Domain and boundaries for an elliptic equation.

Example 1.3 Poisson and Laplace equations (f = 0): The typical
example for an elliptic equation is the Poisson equation,

∂2u

∂x2
+
∂2u

∂y2
= ∆u = f , (1.23)

which in the case of f = 0 is a Laplace equation. �
For elliptic problems, boundary conditions need to be given at all points

of the boundary, as shown in Fig. 1.5. One can distinguish a number of
different types of boundary conditions, of which the three most common
ones are the following:
Dirichlet boundary condition:

u
∣∣∣
∂G

= g1(x, y) (1.24)

Neumann boundary condition:

∂u

∂n

∣∣∣
∂G

= g2(x, y) (1.25)

Robin boundary condition:(
∂u

∂n
+ αu

) ∣∣∣
∂G

= g3(x, y) (1.26)

For elliptic problems, the following observations can be made:

• Compatibility condition in case only Neumann conditions are given:
Start with ∆u = f and integrate over the whole domain:∫

G
fdV =

∫
G

∆udV =

∫
G
∇ · ∇udV (1.27)

Then one can apply the Gauss theorem∫
G
fdV =

∫
δG
∇u · ndS =

∫
δG
g2dS . (1.28)

So one sees that the forcing f and the boundary condition g2 need to
fulfill specific compatibility conditions in order to allow for a solution.
Physically, it expresses that the flux through the boundary needs to
be compensated with a source term inside the domain.
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• Solution u is smoother that f .

• well-behaved solutions.

• Since we have to solve for all points at the same time ⇒ memory
consuming (see homework problems).

1.3.2 Hyperbolic problems

Typical examples for hyperbolic equations are the wave equation, advection
equation and the compressible Euler equation (transient). Hyperbolic prob-
lems describe advection processes with wave-like character, however without
dissipation (undamped).

Example 1.4 Linear wave equation: The simplest example for a hyper-
bolic problem is the linear wave equation (also called advection or convection
equation),

∂u

∂t
+ c

∂u

∂x
= 0 , (1.29)

with a real speed c. �
To analyse the behaviour of the solution, consider the following:

∂u
∂t + c∂u∂x = 0
du
dt

∣∣∣
f

= ∂u
∂t + dx

dt

∣∣∣
f

∂u
∂x

⇒ du

dt

∣∣∣
f

= (λ− c)∂u
∂x

(1.30)

choose:
du

dt

∣∣∣
f

= 0 λ =
dx

dt

∣∣∣
f

= c (1.31)

Classical wave solution:
u = ûei(kx−ωt) (1.32)

Figure 1.6: Solution to the linear wave equation.

• along curves f with dx/dt|f = c the solution is constant.
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• λ is real ⇒ hyperbolic problem

• convection of initial data along characteristics

• Well-posedness means that one needs to provide boundary or ini-
tial conditions according to the number of incoming characteristics
(Fig. 1.7).

Figure 1.7: Well-posedness: the hatched boundaries need to provide bound-
ary or initial conditions.

Example 1.5 Burgers equation:

∂u

∂t
+ u · ∂u

∂x
= ν

∂2u

∂x2
(1.33)

• nonlinear equation (here the one-dimensional viscous Burgers equation
in quasi-linear form),

• There is a viscous version and an inviscid version (with ν = 0). For
the hyperbolic problem, we consider the inviscid version here.

• speed of the characteristics: dx/dt|f = u

• solution along characteristics: du/dt|f = 0, i.e. constant.

• might lead to crossing of characteristics ⇒ shocks, despite smooth
initial conditions, see Fig. 1.8.

�

Example 1.6 System with two characteristics per point : Consider
a hyperbolic problem with two variables u = (u, v) in a space–time (x, t)
plane. Then the zone of influence and the region of dependence of a point
P are wedges starting in P, as shown in Fig. 1.9. �
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Figure 1.8: Development of a shock for the Burgers equation.

Figure 1.9: Dependency of the function value in P for a hyperbolic problem.

1.3.3 Parabolic equation

The most prominent examples of parabolic equations are the heat (or diffu-
sion) equation. Parabolic problems typically describe the following

• equilibrating processes, time dependent

• smoothing properties, smearing out over time.

Figure 1.10: Typical behaviour of a parabolic equation.

Example 1.7 Heat equation: The typical example for a parabolic equa-
tion is the heat (or diffusion) equation, which can be written in one or
multiple dimensions. In the 1D case is reads

∂u

∂t
= ν

∂2u

∂x2
(1.34)
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�
In order to determine the type of the heat equation, we rewrite the

equation as a system of two first-order equations,{
∂u
∂t − ν

∂v
∂x = 0

∂u
∂x = v

(1.35)

So:

u =

(
u
v

)
, A =

(
1 0
0 0

)
, B =

(
0 −ν
1 0

)
, c =

(
0
v

)
(1.36)

the heat equation is parabolic:

det(B − λA) = det

∣∣∣∣−λ −ν
1 0

∣∣∣∣ = −λ · 0 + ν = 0 (1.37)

because λ = ∞ is real and the two eigenvectors are the same. The char-
acteristics are thus horizontal in a space–time plot (Fig. 1.11). Boundary
conditions need to be given on δZ and initial conditions on G. Note the
compatibility between δZ and G.

Figure 1.11: Space–time plot of a parabolic equation.

Example 1.8 Linear system of equations:

∂u

∂t
+

(
a b
b a

)
∂u

∂x
= 0 (1.38)

u =

(
u1

u2

)
, A =

(
1 0
0 1

)
, B =

(
a b
b a

)
, c = 0 (1.39)

Characteristic equation:

(B − λA)
∂u

∂x
= −Adu

dt

∣∣∣
f

+ c (1.40)
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λ =
dx

dt

∣∣∣
f

(1.41)

Eigenvalues:
Ba = λa (1.42)

Hyperbolic case:

a1,2 =

(
1
±1

)
, λ1,2 = a± b (1.43)

So that:

T−1 =
(
a1 a2

)
=

(
1 1
1 −1

)
u = T−1ω (1.44)

T =

(
1/2 1/2
1/2 −1/2

)
ω = Tu (1.45)

So that:
∂ω

∂t
= TBT−1∂ω

∂x
= 0 (1.46)

∂ω1

∂t
+ λ1

∂ω1

∂x
= 0 ⇒ dx

dt
= λ1 ⇒ dω1

dt
= 0 (1.47)

∂ω2

∂t
+ λ2

∂ω2

∂x
= 0 ⇒ dx

dt
= λ2 ⇒ dω2

dt
= 0 (1.48)

�

1.4 Main points to remember

⇒ 3 different types of PDE

• hyperbolic: convection and waves

• parabolic: time-dependent diffusion

• elliptic: steady diffusion

• mixed

⇒ Numerical treatment and boundary/initial conditions depend on type.
⇒ Characteristics (hyperbolic problems) transport information.
⇒ Well-posedness.
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2 Finite-difference schemes

Finite differences (FD):

• the dependent variables, u(x, t), are considered to exist at discrete grid
points, leading to grid functions, e.g.: ui,j = u(xi, yj), u

n
j = u(xj , t

n),
etc.;

• derivatives are approximated by differences, leading to an algebraic
representation of the PDEs.

In case of equidistant grid points (not necessary, in general)

∆x =
Lx

Nx − 1
∆y =

Ly
Ny − 1

, (2.1)

where Lx and Ly are the domain size and Nx and Ny the number of grid
points in the two directions. This then defines the so-called grid function

uij = u(xi, yj) .

The discretisation in time (Chapter 3) is typically added as a superscript

unj = u(xj , t
n) .

Figure 2.1: (Left) Example of a finite difference approximation on a 2D
equidistant grid and (right) first order approximation.

2.1 Derivation of finite difference schemes

General principle: Use Taylor series, and cancel error terms up to a specific
order.
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u(x+ ∆x) = u(x) + ∆x
∂u

∂x
+

1

2!
∆x2∂

2u

∂x2
+

1

3!
∆x3∂

3u

∂x3
+ ... (2.2)

∂u

∂x
=
u(x+ ∆x)− u(x)

∆x
− 1

2
∆x

∂2u

∂x2
+O(∆x2) (2.3)

which can be written as a matrix-vector product:

uN =


. . .
ui−1

ui
ui+1

. . .

 , DN
+ =

1

∆x


. . . . . .

−1 1
−1 1

. . . . . .

 ⇒ u′N ' DN
+ ·uN

(2.4)
Central difference (second order):

D0ui =
ui+1 − ui−1

2∆x
= u′(xi) +O(∆x2) (2.5)

Backward/left-sided difference (first order):

D−ui =
ui − ui−1

∆x
= u′(xi) +O(∆x) (2.6)

Forward/right-sided difference (first order):

D+ui =
ui+1 − ui

∆x
= u′(xi) +O(∆x) (2.7)

2.2 Truncation error

The truncation error is the difference between the numerical and exact
derivative, and due to selecting a number of discrete points in space with a
finite spacing, i.e. grid spacing ∆x > 0. Using Taylor expansion:

D0ui − u′
∣∣∣
xi

=
u(xi + ∆x)− u(xi −∆x)

2∆x
− du

dx

∣∣∣
xi

(2.8)

D0ui − u′
∣∣∣
xi

=
1

6
∆x2 d3u

dx3

∣∣∣
xi

+ · · · = O(∆x2) . (2.9)

In this case, the leading error term is O(∆x2), therefore D0 is called finite
differences of second order. Important: The error goes to zero for ∆x→ 0.
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2.3 Modified wavenumber

With a Taylor expansion we performed a local analysis in terms of the grid
spacing. The concept of the modified wavenumber allows to perform a global
analysis in terms of wave numbers.

Consider a function periodic on L = 2π.

u(x) = eikx (2.10)

eiφ = cosφ+ i sinφ (2.11)

Exact derivative for a Fourier mode:

u′(x)exact = ikeikx (2.12)

Using a finite difference schemes:

u′(x)num = ik̃eikx ⇒ k̃(k) =
u′(x)num

ieikx
(2.13)

The exact modified wavenumber would be k̃ = k. Any departure from from
that is a measure of the global accuracy of the chosen scheme, as a function
of wavenumber k, i.e. the scale (or wavelength) of the derivative considered.

Example 2.1 Central difference scheme:

u′(x)num =
u(x+ ∆x)− u(x−∆x)

2∆x
=

1

2∆x

(
eik(x+∆x) − eik(x−∆x)

)
(2.14)

u′(x)num = i
sin(k∆x)

∆x
eikx = ik̃eikx (2.15)

so:

k̃(k)∆x = sin(k∆x) , k = 0, . . . ,
N

2
(2.16)

As shown in Fig. 2.2b, for long wavelengths (region A) the approximation D0

is good, however for short waves (region B), increased damping of the deriva-
tive is observed. Note: for asymmetric schemes, the modified wavenumber
is complex, leading not only to amplitude errors but also to phase errors
(lagging of waves) in the derivative. �

2.4 Table: Finite difference formulas for first derivatives

Left-sided finite difference scheme first order:

∂u

∂x

∣∣∣∣
xi

=
ui − ui−1

∆x
+

∆x

2

∂2u

∂x2

∣∣∣∣
xi

+ . . . (2.17)
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Figure 2.2: (Left) Fourier decomposition of a certain function (right) modi-
fied wave-number.

Left-sided finite difference scheme second order:

∂u

∂x

∣∣∣∣
xi

=
3ui − 4ui−1 + ui−2

2∆x
+

∆x2

3

∂3u

∂x3

∣∣∣∣
xi

+ . . . (2.18)

Right-sided finite difference scheme first order:

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui

∆x
− ∆x

2

∂2u

∂x2

∣∣∣∣
xi

+ . . . (2.19)

Right-sided finite difference scheme second order:

∂u

∂x

∣∣∣∣
xi

=
−3ui + 4ui+1 − ui+2

2∆x
+

∆x2

3

∂3u

∂x3

∣∣∣∣
xi

+ . . . (2.20)

Central finite difference scheme second order:

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2∆x
− ∆x2

6

∂3u

∂x3

∣∣∣∣
xi

+ . . . (2.21)

Central finite difference scheme fourth order:

∂u

∂x

∣∣∣∣
xi

=
−ui+2 + 8ui+1 − 8ui−1 + ui−2

12∆x
+

∆x4

30

∂5u

∂x5

∣∣∣∣
xi

+ . . . (2.22)

2.5 Table: Finite difference formulas for second derivatives

Left-sided finite difference scheme first order:

∂2u

∂x2

∣∣∣∣
xi

=
ui − 2ui−1 + ui−2

∆x2
+ ∆x

∂3u

∂x3

∣∣∣∣
xi

+ . . . (2.23)

Left-sided finite difference scheme second order:

∂2u

∂x2

∣∣∣∣
xi

=
2ui − 5ui−1 + 4ui−2 − ui−3

∆x2
− 11∆x2

12

∂4u

∂x4

∣∣∣∣
xi

+ . . . (2.24)



2.6 Table: Finite difference formulas for third derivatives 20

Right-sided finite difference scheme first order:

∂2u

∂x2

∣∣∣∣
xi

=
ui+2 − 2ui+1 + ui

∆x2
−∆x

∂3u

∂x3

∣∣∣∣
xi

+ . . . (2.25)

Right-sided finite difference scheme second order:

∂2u

∂x2

∣∣∣∣
xi

=
2ui − 5ui+1 + 4ui+2 − ui+3

∆x2
+

11∆x2

12

∂4u

∂x4

∣∣∣∣
xi

+ . . . (2.26)

Central finite difference scheme second order:

∂2u

∂x2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

∆x2
− ∆x2

12

∂4u

∂x4

∣∣∣∣
xi

+ . . . (2.27)

Central finite difference scheme fourth order:

∂2u

∂x2

∣∣∣∣
xi

=
−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12∆x2
+

∆x4

90

∂6u

∂x6

∣∣∣∣
xi

+ . . .

(2.28)

2.6 Table: Finite difference formulas for third derivatives

Central finite difference scheme second order:

∂3u

∂x3

∣∣∣∣
xi

=
ui+2 − 2ui+1 + 2ui−1 − ui−2

2∆x3
− ∆x2

4

∂5u

∂x5

∣∣∣∣
xi

+ . . . (2.29)

Central finite difference scheme fourth order:

∂3u

∂x3

∣∣∣∣
xi

=
−ui+3 + 8ui+2 − 13ui+1 + 13ui−1 − 8ui−2 + ui−3

8∆x3
+

7∆x4

120

∂7u

∂x7

∣∣∣∣
xi

+. . .

(2.30)

2.7 Table: Finite difference formulas for fourth derivatives

Central finite difference scheme second order:

∂4u

∂x4

∣∣∣∣
xi

=
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

∆x4
− ∆x2

6

∂6u

∂x6

∣∣∣∣
xi

+ . . . (2.31)
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3 Discretisation in time

So far we have considered the discretisation in space:

∂u

∂t
+
∂u

∂x
= 0

∂u

∂x

∣∣∣
i
≈ ui − ui−1

∆x
+O(∆x) (3.1)

Semidiscretization:

∂u

∂t
= L(u) = −∂u

∂x
⇒ dui

dt
= LN (ui) (3.2)

We have a transformation of the original PDE to an ODE of the grid func-
tion.

3.1 Euler method

Now we need to find methods to integrate an ODE of the form dui/dt =
LN (ui). The most straightforward way is to use first-order finite differences
in time: the so-called Euler method.

dui
dt
≈
un+1
i − uni

∆t
+O(∆t) . (3.3)

Note that the superscripts n and n+ 1 denote the time level. The question
is when to evaluate LN , which gives two variants:

• Euler forward:
un+1
i − uni

∆t
= LN (uni ) (3.4)

• Euler backward:
un+1
i − uni

∆t
= LN (un+1

i ) (3.5)

The difference is that the right-hand side (RHS) is evaluated at either the
old time step tn or the new time step tn+1.

Example 3.1 Advection equation: Euler forward (forward time back-
ward space – FTBS), explicit:

un+1
i − uni

∆t
= −

uni − uni−1

∆x
= −D−uni ⇒ un+1

i = uni −
∆t

∆x
(uni − uni−1)

(3.6)

• one equation per grid point

• easy to implement, very straight-forward

• However, usually restriction on time step size ∆t
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Figure 3.1: Graphical representation of the (right) explicit and (left) implicit
Euler method in a space–time plane.

Euler backward (backward time backward space – BTBS), implicit:

un+1
i − uni

∆t
= −

un+1
i − un+1

i−1

∆x
= −D−un+1

i ⇒ (1 + ∆tD−)un+1
i = uni

(3.7)

• For each time step, we have to solve an equation system:

Aun+1
i = uni (3.8)

• It is more difficult to implement, and it has larger memory require-
ments, which scales as ND ×ND, where N and D are the number of
grid points and the dimensions of the problem, respectively.

• It has larger stability bounds.

�
Other popular time-integration methods are:

• Crank–Nicolson: it is a combination of explicit and implicit Euler,
giving order ∆t2 (see HW2).

• Runge-Kutta (RK) with substeps (HW3),

• multi-steps methods, e.g.: Adams–Bashforth (explicit) and Adam–
Moulton (implicit).

Some of these methods will be used in the homeworks. Note that for instance
Matlab and Python include implementations of these integration schemes.

3.2 Characteristic polynomial

The amplification factor G(z) defines the characteristic polynomial for the
various integration schemes, as well as the exact integration of the Dahlquist
equation. With z = λ∆z one gets
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• explicit Euler method:

G(z) =
un+1

un
= 1 + z (3.9)

• implicit Euler method:

G(z) =
1

1− z
(3.10)

• Crank–Nicolson method:

G(z) =
1 + z/2

1− z/2
(3.11)

• exact:
G(z) = ez (3.12)

One can see that the charactersitic polynomials for the different integration
methods are essentially rational approximation of the exponential ez around
z = 0, as illustrated in Fig. 3.2. It becomes also obvious that the behaviour of

Figure 3.2: Characteristic polynomial for various approximations G(z) with
real z = λ∆x: explicit Euler (EE), implicit Euler (IE), Crank–Nicolson
(CN). The hatched area indicates the region where the schemes are unstable.

the different schemes differs as z → −∞. Such problems are typically called
stiff problems as they are related to very fast time scales (large negative z).
The explicit Euler scheme diverges towards minus infinity, which shows that
it is, as shown above, unstable for large negative z. The Crank–Nicolson
scheme goes to −1, and the implicit Euler scheme to 0, as does the exact
solution. This shows that CN tends to give stable (i.e. non growing) but
oscillating results, which is not the case for the implicit Euler scheme which
will converge monotonically.

In this context, two expressions can be defined: An integration scheme
is called
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• A-stable if |G| ≤ 1 for all λ ≤ 0,

• and L-stable if in addition limz→−∞G(z) = 0.

The latter schemes are best suited for stiff problems.

3.3 Table: Finite differences for the integration of ODEs

Ordinary differential equation:

du

dt
= f(u, t), un = u(tn), fn = (un, tn), tn = n∆t (3.13)

Explicit Euler scheme, order O(∆t):

un+1 = un + ∆t · fn (3.14)

Implicit Euler scheme, order O(∆t):

un+1 = un + ∆t · fn+1 (3.15)

(Generalised) Crank-Nicolson scheme:

un+1 = un + ∆t([1− θ] · fn + [θ] · fn+1) , 0 ≤ θ ≤ 1 (3.16)

[The standard Crank–Nicolson scheme is given by θ = 0.5 with orderO(∆t2);
the explicit and implict Euler schemes are obtained with θ = 0 and θ = 1,
respectively.]
Standard Runge–Kutta scheme (RK4), order O(∆t4):

un+1 = un +
∆t

6
(fn + 2k1 + 2k2 + k3) (3.17)

with : u1 = un +
∆t

2
fn, k1 = f(u1, t

n+ 1
2 ), tn+ 1

2 = tn +
∆t

2
(3.18)

u2 = un +
∆t

2
k1, k2 = f(u2, t

n+ 1
2 ) (3.19)

u3 = un + ∆tk2, k3 = f(u3, t
n+1) (3.20)

3.4 Points to remember

Finite differences:

• approximation of derivatives via Taylor expansion;

• modified wavenumber: global (spectral) analysis;

• semidiscretisation: PDE transformed to ODE.

• time discretisation: explicit & implicit.
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4 Analysis of the discretised equations

Summary:

• Physical model ⇒ PDE.

• Classify PDE ⇒ expected behaviour.

• Choose discretisation ⇒ FD, however

– central differences / skewed differences;

– time integration (explicit, implicit).

Can we choose any discretisation? NO!

Now, analysis of the discretised system:

1. Consistency — order of accuracy;

2. Stability — von Neumann analysis, modified differential equation;

3. Convergence — Lax–Richtmyer (LR) equivalence theorem;

To answer the questions:

1. How well do we approximate the PDE?

2. Sensitivity to disturbances, i.e. will the solution blow up at some time?

3. Do we really approximate a true (correct) solution?

Figure 4.1: Schematic representation of the concepts of consistency, stability
and convergence.
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4.1 Convergence

Does the numerical solution approach the exact solution as the mesh is
refined?

Definition 4.1 Convergence:

||unj − u(xj , y
n)|| ≤ C(∆xp + ∆tq), for ∆x, ∆t→ 0,withp, q, C > 0 (4.1)

where p and q are the rate of convergence. �
It is very difficult to show convergence without knowing the exact solu-

tion, however we can use a theorem by Lax and Richtmyer: Given a linear,
well-posed initial value problem, if the FD approximation is consistent and
stable, convergence is assured (necessary and sufficient condition).Consistency: lim

∆x,∆t→0
T → 0

Stability: |G| < 1
⇔ Convergence: lim

∆x,∆t→0
unj → u(xj , t

n)

(4.2)
Therefore, it is important to discuss the concepts of consistency (Section 4.2)
and stability (Section 4.3).

4.2 Consistency

Consistency essentially means how well we approximate the PDE.

PDE: P (x, t, ∂x, ∂t)[u] = f, u(x, 0) = g (4.3)

discrete: PN (x, t,∆x,∆t)[un] = fN , uN (x, 0) = gN (4.4)

Therefore, one defines the truncation error as the difference between exact
PD and its discrete representation:

Definition 4.2 Local truncation error :

T (xj , t
n) = P [v]xj ,tn − PN [vN ]xj ,tn (4.5)

�
Consistency now means that this error needs to go to zero for smaller

and smaller grid spacings in space and time.

Definition 4.3 Consistency :

||T (xj , t
n)|| ≤ C(tn)(∆xp + ∆tq) with: C, p, q > 0

where p and q are called the (consistency) order of the spatial and temporal
discretization, respectively. �
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Example 4.1 Advection equation:

∂u

∂t
+ a

∂u

∂x
= 0 (4.6)

FTBS (forward time, backward space):

un+1
j − unj

∆t
+ a

unj − unj−1

∆x
= 0 (4.7)

Idea: Use Taylor expansion:

un+1
j = u(xj , t

n) + ∆tut +
1

2
∆t2utt +O(∆t3)

unj−1 = u(xj , t
n)−∆xux +

1

2
∆x2uxx +O(∆x3)

(4.8)

Substituting equation (4.8) into (4.7):

∂u

∂t
+ a

∂u

∂x
= −1

2
∆tutt + a

1

2
∆xuxx +O(∆t2) +O(∆x2) (4.9)

Using (4.5) to get the truncation error

T (xj , t
n) = − 1

2
∆t utt︸ ︷︷ ︸
q=1

+
1

2
a ·∆xuxx︸ ︷︷ ︸

p=1

+O(∆t2,∆x2) . (4.10)

The truncation error is order one in time and space (order of accuracy).
Therefore, the above discretisation is indeed consistent. Using the PDE to
relate utt and uxx (equality of mixed partials):

utt = a2uxx and σ =
a∆t

∆x
⇒ T (xj , t

n) =
1

2
a∆x(1− σ)uxx (4.11)

�

Example 4.2 DuFort–Frankel scheme: There are schemes that are
so-called conditionally stable, as e.g. the DuFort–Frankel scheme applied
to the diffusion equation. In this case, a condition relating both the grid
spacing ∆x and the time step ∆t arises due to consistency, rather than due
to stability as for most other cases (note that the DuFort–Frankel scheme is
unconditionally stable). �

4.3 Stability

A stable numerical scheme is a scheme for which errors from any source
(round off and truncation) are not permitted to grow as the calculation
proceeds from one time (or marching) step to the next. In short: the errors
must not amplify.
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Consider the scheme PN [uN ] = 0 (as before). Write it in the following
explicit form

un+1
N = G(∆x,∆t)unN ,with initial condition: u0

N (4.12)

Starting from time t = 0, we can write

unN = Gun−1
N = G(G(un−2

N )) = · · · = Gnu0
N . (4.13)

Due to linearity, the errors uN + ε fulfill the same discretised equation,
thereby being amplified with the same operator G:

PN (ε) = 0 ⇒ εnN = Gnε0
N (4.14)

G is called amplification factor/matrix for the proper discretisation.
Therefore, in order to make sure that errors ε do not amplify, stability

means that ||G|| ≤ 1.

4.3.1 Absolute stability for an ODE

Let us consider the Dahlquist equation (see HW2):

u′ = λu, λ ∈ C = λr + iλi (4.15)

This equation has the exact solution:

u(t) = Aeλt (4.16)

If we define “stability” of a scheme as “u should not grow”, the exact solution
is stable for λr = Re(λ) ≤ 0, i.e. the left halfplane of the complex z = λ∆t
plane. Let us apply the Euler forward integration scheme,

un+1 − un

∆t
= λun ⇒ un+1 = (1 + λ∆t)︸ ︷︷ ︸

G(∆t·λ)

un (4.17)

Stability now means |G| ≤ 1, i.e. the solution does not increase from one
time step to another. Using z = λ∆t, then

|G| ≤ 1 ⇔ |1 + λ∆t| = |1 + z| ≤ 1 , (4.18)

which is the description of a circle in the complex z-plane with radius 1 and
origin at -1, as shown in Fig. 4.2. The integration of (4.15) via (4.17) is
stable if z = λ∆t is within the hatched area in Fig. 4.2. Compare this to
the analytical region of stability (not A-stable).



4.3 Stability 29

Figure 4.2: Region of absolute stability in the complex z = λ∆t plane for
the forward Euler scheme.

Definition 4.4 A-stable: A scheme is A-stable if the complete half plane
Re(λ∆t) < 0 is contained in the region of absolute stability. �

This definition goes back to Dahlquist (1963). Based on our results we
can thus state that:

• The explicit Euler is NOT A-stable, therefore restrictions on the time
step ∆t need to be imposed. This is typical for explicit methods.

• The implicit Euler is A-stable (derivation similar as above). Also that
is a typical behaviour for implicit methods.

This is also what was already discussed further above in the context of the
characteristic polynomial, see Sec. 3.2 and Fig. 3.2. There also the definition
of L-stable was introduced.

The computation of the stability bounds for single step schemes can
always be done as shown for the example above; this includes also more
complicated schemes such as Runge–Kutta schemes. In the case of multi-
step schemes one just realises that un+1 = Gun = G2un−1, and will end up
with a quadratic (or even higher order) equation. The stability limit is then
composed of the minimum λ∆t for each root.

4.3.2 Von Neumann analysis for PDEs

Going back to John Crank and Phyllis Nicolson (1947) and Jule Charney,
Ragnar Fjørtoft and John von Neumann (1950).

• Idea: use a discrete Fourier transform of the solution and consider an
individual mode,

• Restrictions: in principle, only applicable to linear PDE with constant
coefficient and periodic boundary conditions.
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The ansatz for the solution is:

unj =

N/2∑
k=−N/2

ûnk e
ikxj , (4.19)

note the separation of time and space. We consider an individual mode,
ûnk e

ikxj = unj , and we make a substitution in the discretised form in order
to compute the amplification factor per wavenumber,

Ĝ(k) =
ûn+1
k

ûnk
. (4.20)

The condition for stability in this case becomes

max
k
|Ĝ(k)| ≤ 1 +O(∆t) (4.21)

Example 4.3 Advection equation: Discretise the advection equation
with FTBS

un+1
j − unj

∆t
+ a

unj − unj−1

∆x
= 0 , (4.22)

where

unj = ûnke
ikxj

un+1
j = ûn+1

k eikxj

unj−1 = ûnke
ikxj−1 = ûnke

ikxje−ik∆x = unj e
−ik∆x

(4.23)

Thus:

ûn+1
k =

1− ∆t

∆x
a︸ ︷︷ ︸

σ

(
1− e−ik∆x

) ûnk = Ĝ(k)ûnk (4.24)

Ĝ(k) =
ûn+1
k

ûnk
= 1− σ

(
1− e−ik∆x

)
= 1− σ + σeik∆x (4.25)

For stability, |Ĝ(k)| ≤ 1, which corresponds to require that the circle Ĝ in
the complex plane lays within the circle |z| = 1. In the stability limit:

σ ≤ 1 ⇒ a∆t

∆x
≤ 1 (4.26)

�
This is the so-called CFL condition, named after Courant, Friedrichs,

Levy (1920), which is particular relevant for convectively dominated prob-
lems, and the so-called Courant number

σ =
a∆t

∆x
. (4.27)
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Figure 4.3: Integration of the advection equation, starting with a top-hat
initial condition, for different values of the Courant number σ.

For the present discretisation FTBS, in order to have a stable numerical
scheme, we need to choose

∆t ≤ ∆x

a
. (4.28)

An example of how stable and unstable integration may look like in a sim-
ulation is given in Fig. 4.3. It can be see that for σ ≤ 1 the initial condition
is transported to the right, without overshoots, but increased smoothing for
lower σ. However, even a slight increase of σ beyond unity leads to strong
growth of the solution, and wiggles at both ends of the square wave.

Example 4.4 Negative speed : Same as before, but with negative con-
vection velocity, a < 0. We get exactly the same Ĝ = 1−σ(1−e−ik∆x) with
negative σ = a∆t/∆x. However, 1 − σ > 1, so the circle will be outside
|z| = 1:

• we cannot find a combination of ∆x, ∆t > 0 that yields stability;

• therefore the scheme is unconditionally unstable.

�

4.3.3 Method of lines

The method of lines typically refers to analysing the properties (in particular
also the stability) of schemes by first performing a semi-discretisation to
remove the spatial derivatives, and then assessing the temporal stability
based on the respective spatial difference operators. In this way, we can



4.3 Stability 32

Figure 4.4: Plot of the stability region for the convection equation, left with
positive convection velocity, right with negative velocity.

now compare and combine the methods to assess stability introduced in
Sections 4.3.1 and 4.3.2.

Consider again the advection equation

∂u

∂t
+ a

∂u

∂x
= 0⇒ ∂u

∂t
= L(u) = −a∂u

∂x
. (4.29)

The spatial derivatives can now be discretised yielding the semi-discretisation,
in this case using one-sided finite differences,

duj
dt

= LN (uj) = −auj − uj−1

∆x
. (4.30)

As for the von-Neumann analysis, we make a Fourier ansatz uj = ûke
ixjk,

and can thus rewrite equation (4.30) in Fourier space

dûk
dt

= −aûk − ûke
−ik∆x

∆x
= λûk . (4.31)

The last equation sign defines the λ that corresponds to the specific spatial
discretisation that needs to be integrated in time,

λ =
a

∆x

(
e−ik∆x − 1

)
. (4.32)

Note that equation (4.31) can also be derived using the modified wavenum-
ber pertaining to the specific spatial discretisation. In the present case, we
start with the Fourier-transformed advection equation,

dûk
dt

= −aûk,x = −aik̃ûk . (4.33)

The modified wavenumber k̃ can be derived for the upwind scheme as

ik̃∆x = 1− cos(k∆x) + i sin(∆x) = 1− e−ik∆x , (4.34)
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which is complex as expected for one-sided schemes.
The λ from equation (4.32) describes a circle with centre −a/∆x and

radius a/∆x. This λ, for a specific choice of ∆x and ∆t needs to be contained
within the region of absolute stability of the chosen time-integration scheme.
For instance, when using the explicit Euler scheme, one can see that the
circle from the spatial discretisation and the stability limit from the Euler
scheme coincide if λ∆t = λ∆x/a. This gives the condition for stability ∆t ≤
∆x/a, which of course is consistent with all the other ways of determining
stability.

4.3.4 Method of modified differential equation

The method of modified differential equation is another intuitive approach
to assess stability: let us go back to the example of the truncation error.
For FTBS:

T (xj , t
n) =

1

2
a∆x(1− σ)uxx (4.35)

The original PDE is
ut + aux = 0 . (4.36)

The discretised version (”modified” PDE) is

ut + aux =
1

2
a∆x(1− σ)uxx +O(∆x2,∆t2) . (4.37)

The first term on the right hand side is a diffusive term, with numerical
diffusivity, νnum equal to

νnum =
1

2
a∆x(1− σ) . (4.38)

Since a > 0⇒ νnum > 0, thus:

1− σ > 0 ⇒ σ < 1 . (4.39)

It essentially means that stability for FTBS requires positive numerical vis-
cosity.

4.4 Points to remember

We discussed the convergence of equation:

ut + auxx = 0 (4.40)

discretised by FTBS

un+1
j − unj

∆t
+
a(unj − unj−1)

∆x
= 0 (4.41)

We showed that FTBS is
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• the system is well-posed (see Lecture 1);

• the discretization is consistent:

lim
∆x,∆t→0

T = lim
1

2
a∆x(1− σ)uxx = 0 (4.42)

• the system is stable for:

σ = a
∆x

∆t
≤ 1 (4.43)

Therefore, with the Lax-Richtmyer theorem, the numerical solution that we
obtain is indeed converging towards the exact solution when ∆x, ∆t→ 0:

lim
∆x,∆t→0

unj → u(xj , t
n) (4.44)

• Consistency ⇒ order of accuracy, truncation error.

• Stability ⇒ no error amplification, von Neumann analysis, modified
PDE.

• Convergence ⇒ solve the correct problem, LR equivalence theorem.
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5 Compressible flow

We considered the general compressible Navier–Stokes equation,

∂U

∂t
+∇ · F = Q . (5.1)

The conservative variables are ρ, ρu, ρv, ρw and E (i.e. density, momentum
and energy)

U =

 ρ
ρu
E

 E = ρ(e+
1

2
u2) , (5.2)

where E and e are the total energy and the internal energy, respectively,
and 1/2ρu2 the kinetic energy. The flux function F is given by

F =

 ρu
ρuu+ pI + τ

(E + p)u− τ · u− k∇T

 , (5.3)

where τ is the viscous stress and the −k∇T the heat dissipation and the
thermal conductivity k. The (nonlinear) tensor (outer) product is defined
as

uu =

uu uv uw
vu vv vw
wu wv ww

 . (5.4)

The external forces are typically

Q =

 0
ρg

Q

 , (5.5)

where g and Q are the gravity vector and a heat source, respectively.
This represent the most general description of a fluid flow (gas, liquid, etc.),
within the continuous approximation. In order to close the system, a model
is needed for the viscous stress: in case of a Newtonian fluid we have

τ = µ

(
∇u+∇uT −

(
2

3
∇ · u

)
I

)
(5.6)

as well as relations to connect E, p and u, for instance the ideal gas model.
In order to be able to simplify these equations, and only consider the most
relevant terms, the two major distinctions are:

• viscous / inviscid flow ⇒ τ = 0;

• compressible / incompressible flow ⇒ constant ρ (along fluid trajec-
tories Dρ/Dt = 0).
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Figure 5.1: Wing profile (top) without and (bottom) with separation.

When is a flow compressible? A fluid (gas, liquid) is always com-
pressible to some extent. However, in a specific flow situation, compress-
ibility may be neglected.

• incompressible flow: conditions such that the they cause small pressure
changes in the fluid;

• large pressure changes (waves)

Rule of thumb: Incompressible consideration is sufficient for gases when
u ≤ 0.3c, where c is the speed of sound, which is in general expressed in
terms of the Mach number M :

M =
u

c
≤ 0.3 (5.7)

When is a flow inviscid? When viscous effect are not important, e.g.:
far away from walls, in absence of separation and at high Reynolds number
⇒ outside the boundary layer region, see Fig. 5.1.

5.1 Euler equations

Assuming the flow inviscid and compressible, we obtain the Euler equations:

∂U

∂t
+∇ · F = Q , (5.8)
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where:

U =

 ρ
ρu
E

 F =

 ρu
ρuu+ pI
(E + p)u

 Q = 0 E = ρ

(
e+

1

2
u2

)
(5.9)

These are 5 equations for 6 unknowns, ρ, u, p and e. An additional equation
is required from thermodynamics

e = e(T, p) . (5.10)

For an ideal gas (like air) e = e(T ) and:

p = ρRT (5.11)

e = cV T (5.12)

cV =
R

γ − 1
γ =

cP
cV
' 1.4 (for air) (5.13)

Here R is the specific gas constant, R = R/M , where R = 8.314J/(K ·mol)
and M the molar mass in kg/mol, cv = (∂e/∂T )ρ and cp = (∂h/∂T )p (the
enthalpy, h = e + p/ρ) are the amount of heat absorbed per unit mass of
fluid per unit rise in temperature (specific heat), respectively, and γ is the
adiabatic index. With these equations, one can build the required equation
of state

p = ρ(γ − 1)e γ =
cP
cV
' 1.4 (for air) . (5.14)

Equations (5.9) and (5.14) form a complete system for compressible inviscid
flow of an ideal gas (without considering chemical reactions).

5.2 Type classification

Considering the 1D case, in conservative form: U t + F x = 0.

U =

 ρ
ρu

(p+ E)u

 F (U) =

 ρu
ρu2 + p

(E + p)u

 (5.15)

E = ρ(e+
1

2
u2) p = (γ − 1)ρ · e (5.16)

As done earlier, we can rewrite it as V t + AV x = 0, which is the so-called
quasi-linear form

V =

ρu
p

 A =

u ρ 0
0 u 1/ρ
0 ρc2 u

 with c2 =
γp

ρ
=
∂p

∂ρ

∣∣∣∣∣
ad

, (5.17)
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where in the adiabatic limit p = k · ργ . The system has three eigenvalues

λ1 = u, λ2 = u+ c, λ3 = u− c . (5.18)

Since λi are all real, the system is of hyperbolic type. Therefore, we can
state that the Euler equations represent a non-linear, hyperbolic system of
equations with three conservative variables density ρ, momentum ρu and
energy E.

5.3 Non-linear conservation laws

Consider the problem in so-called conservative (or divergence) form:

∂u

∂t
+

∂

∂x
f(u) = 0 (5.19)

The quasi-linear (or convective) form is:

∂u

∂t
+ f ′

∂u

∂x
= 0 (5.20)

The characteristics are:

du

dt
= ut +

dx

dt
ux = 0 with

dx

dt
= f ′ = λ (5.21)

The solution is thus constant along lines

dx

dt
= f ′ . (5.22)

Example 5.1 Advection equation:

f(u) = au, f ′ = a ⇒ dx

dt
= λ = a , (5.23)

which represent constant advection with velocity a. �

Example 5.2 Burgers equation:

f(u) =
1

2
u2, f ′ = u (5.24)

Since the characteristics can cross, discontinuity may develop (shock), de-
spite smooth initial condition: this is a feature of non-linear conservation
laws. This was already shown in Fig. 1.8 above. �
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5.3.1 Conservation property of a conservation law

What is actually conserved when applying a conservation law? For that we
consider a canonical form,

∂u

∂t
+

∂

∂x
f(u) = 0 . (5.25)

Integrate in −∞ < x <∞:∫ +∞

−∞
(ut + fx) dx =

d

dt

∫ +∞

−∞
udx+ f(u)

∣∣∣∣+∞
−∞

= 0 ⇒ (5.26)

If we assume f(u)→ 0 for x→ ±∞ (no flux at ±∞):

⇒ d

dt

∫ +∞

−∞
udx = 0 (5.27)

Therefore, we see that the integral of the quantity u is conserved in the full
domain. If one wants to work with a smaller domain, by integrating in the
finite interval a ≤ x ≤ b we obtain the integral form:

d

dt

∫ b

a
udx︸ ︷︷ ︸

total quantity

= f(u(a, t))︸ ︷︷ ︸
“flux” in at a

− f(u(b, t))︸ ︷︷ ︸
“flux” in at b

. (5.28)

This equation means that the change inside the considered domain is equal
to what comes in minus what goes out. The numerical approximation should
respect this property: conservative formulation. Use this form for dis-
continuous u, since no derivatives are necessary.

5.3.2 Riemann problem

In order to understand the behaviour of nonlinear conservation laws, we
consider two canonical situations, namely a single step, either from high
to low, or from low to high. This simplified case has become know as a
Riemann problem, and is used as a test problem for numerical algorithms.
Let us consider the following Riemann problem with the Burgers flux

ut + f(x)x = 0 f(u) =
1

2
u2 , (5.29)

u0(x) =

{
uL if x ≤ 0

uR if x > 0
(5.30)

The initial data has only two constant values. The characteristics are the
lines with slope:
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Figure 5.2: Initial conditions of the Riemann problem.

Figure 5.3: Shock (intersection of the characteristics).

dx

dt
= f ′(u) = u (5.31)

The shock speed (intersection of the characteristics) is given by the
Rankine–Hugoniot condition

s =
dx

dt

∣∣∣∣∣
s

=
f(uL)− f(uR)

uL − uR
=

1

2
(uR + uL) , (5.32)

where the last equation only holds for the specific case of the Burgers equa-
tion. In this case, the general solution is to the given initial condition is

u(x, t) =

{
uL if x− st < 0

uR if x− st ≥ 0
. (5.33)

Note that s is not the speed of the characteristics (as in the linear case,
speed a).

Since we deal with physical problems, even discontinuous solutions should
satisfy basic physical (thermodynamics) properties. Entropy condition:
Entropy S is a measure of the “disorder” of a system. It indicates how much
of the inner energy in a system is available to do useful work (e.g.: increase
pressure, decrease density, etc.).

• smooth flows: entropy is constant along fluid path (isentropic flows).

• shocks: entropy should increase: f ′(uL) > s > f ′(uR) over a shock.
This condition essentially says that characteristics need to go into a
shock, not originate in the shock.
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For the case of the Burgers flux, the entropy condition translates to

uL >
1

2
(uR + uL) > uR , (5.34)

i.e. the speed on the left needs to be larger than the speed on the right for a
shock to appear (since uL > uR). In the considered case the shock is indeed
increasing the entropy and is thus a physical solution.

Consider now the opposite conditions uL < uR, illustrated in Fig. 5.4.
Here two options are either an ”expansion shock”, or a smooth expansion

Figure 5.4: Riemann problem with uL < uR.

wave. The shock solution would not fulfill the entropy condition (uL >
1
2(uR + uL) > uR which is inconsistent with uL < uR) and is thus not
a physical solution. Thus the smooth expansion fan or rarefaction wave is
appearing, i.e. a smooth (linear) transition from uL to uR. This is a solution
in the classical sense and we do not need the entropy condition.

The two physical solutions to the Riemann problem with either uL >
uR and uL < uR are summarised in Fig. 5.5. We can thus easily sketch
the solution in both cases. Doing this consideration in every point can
potentially be used to construct the solution of a conservation law even in
larger domains with more complex initial conditions.

Figure 5.5: Solution to the Riemann problem for (left) uL > uR and (right)
uL < uR.
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5.3.3 Connection to physical problem

A hyperbolic problem (at least as a math model for physics) is often an
approximation to a problem with small viscosity.
For the Burger equation:

ut +

(
1

2
u2

)
x

= 0 ⇒ ut +

(
1

2
u2

)
x

= εuxx (5.35)

ε is small and therefore neglected. A physical shock is actually not discon-
tinuous, but has very steep gradient.

5.3.4 Derivation of the Rankine–Hugoniot condition

In order to derive the speed of shocks, the so-called Rankine–Hugoniot con-
dition, we start with a generic conservation law,

∂u

∂t
+

∂

∂x
f(u) = 0 . (5.36)

In the integral form:

d

dt

∫ x2

x1

udx = f(u)

∣∣∣∣∣
x1

− f(u)

∣∣∣∣∣
x2

(5.37)

Consider small a x/t-plane:

∫ x1+∆x

x1

u(x, t1 + ∆t) dx−
∫ x1+∆x

x1

u(x, t1)dx =∫ t1+∆t

t1

f(u(x1))dt−
∫ t1+∆t

x1

f(u(x1 + ∆x)dt

(5.38)

with u being constant:

∆x · uR −∆x · ul = ∆tf(uL)−∆tf(uR) +O(∆t2) (5.39)
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assuming s = −∆x
∆t :

− ∆x

∆t
(ul − ur) = f(uL)− f(uR) +O(∆t) (5.40)

In the limit ∆t→ 0

s =
f(uR)− f(uL)

uR − uL
, (5.41)

which is the Rankine–Hugoniot condition. As stated above, for the Burgers
flux f(u) = u2/2, one gets s = (uR + uL)/2.
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6 Numerical methods for hyperbolic problems

6.1 A first example

Example 6.1 Burgers equation in convective form: Solve the Burg-
ers equation in non-conservative (convective) form:

ut + u · ux = 0 u0(x) =

{
1 x < 0

0 x ≥ 0
(6.1)

The exact solution is a shock moving to the right with speed s (Rankine-
Hugoniot condition),

s =
f(uL)− f(uR)

uL − uR
=

1

2
. (6.2)

Let consider a simple upwind scheme:

un+1
j = unj −

∆t

∆x
unj (unj − unj−1) (6.3)

with initial condition:

u0
j (x) =

{
1 x < 0

0 x ≥ 0
(6.4)

Compute:

u1
j = u0

j −
∆t

∆x
· u0

j (u
0
j − u0

j−1) (6.5)

u0
j − u0

j−1 = 0 , ∀j except: j = 0, but at j = 0 is u0
0, thus: u1

j = u0
j ,∀j.

This continues for subsequent time steps, therefore the numerical solution
converges to the solution:

u(x, t) = u0(x) (6.6)

which is obviously incorrect, and would not even converge for a finer grid
spacing in space and time. The shock speed is estimated to s = 0 as opposed
to the correct result s = 1/2. Considering the integrated value of u shows
that for negative x there is an influx f = 1, and for positive x a flux of
f = 0. This shows that the numerical scheme does not conserve u. It is thus
better to approximate the conservative formulation ut + f(u)x = 0 instead,
which would, even in its discretised form, conserve u. �

6.2 CFL condition

Let us go a step backward and consider the advection equation,

∂u

∂t
+ a

∂u

∂x
= 0 . (6.7)
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Figure 6.1: Domain of dependence for (left) upwind and (right) central
difference schemes.

With the von Neumann analysis we found that the upwind/FTBS scheme
is stable for

σ =
a∆t

∆x
≤ 1 (a > 0) . (6.8)

The above criterion is called CFL (Courant–Friedrichs–Lewy, 1928) condi-
tion, and σ is a the Courant number.
Interpretation: a necessary condition for stability is that the domain of
dependence of the FD scheme should include the domain of dependence of
the PDE. The information should not travel more than one grid point. Note
that the maximum σ is a function of the underlying PDE and the time-
integration scheme.
Upwind schemes need to be always in the direction of the charac-
teristics.

Example 6.2 CFL condition for central schemes: Consider a central
difference schemes (FTCS):

un+1
j = unj −

a∆t

2∆x
(uj+1 − uj−1) (6.9)

Let us perform the von Neumann analysis, substituting unj = ûnk e
ikxj :

ûn+1
k = ûnk

1− a∆t

2∆x

(
eik∆x − e−ik∆x

)
︸ ︷︷ ︸

−iσ sin(k∆x)

 ⇒ û(k) = 1− iσ sin(k∆x)

(6.10)
⇒ |û(k)|2 = 1 + σ sin2(k∆x) > 1 , (6.11)

where σ = a∆t
∆x , therefore this numerical scheme is unconditionally unstable!

Although the CFL condition is fulfilled, the scheme is unstable: the CFL
condition is only necessary, not sufficient! �
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Example 6.3 Burgers equation: Let us now consider the Burgers equa-
tion in conservative form:

ut + f(u)x = 0 u(x, 0) =

{
−1 x ≤ 0

1 x > 0
uL < uR , (6.12)

where f(u) = u2/2 and f ′(u) = u. As we know, the local speed of the
characteristics is a = f ′(u). Considering the direction of propagation for
the solution, we need to use a different discretization scheme, dependent on
the local speed a (thus dependent on the local solution), i.e. upwind based
on the fluxes between xj and xj+1, or between xj and xj−1. We can thus
formally write

un+1
j = unj −

∆t

∆x

(
hnj+1/2 − h

n
j−1/2

)
, (6.13)

where hnj+1/2 and hnj−1/2 are approximations to the two fluxes on the left

and on the right of grid point j; denoted with the position j − 1/2 and
j + 1/2. Such a generic form of the discretised conservation law (6.13) is
called conservative as it mimics the conservation properties of the underlying
integral form of the conservation law. We can thus construct the appropriate
differences depending on the local speed f ′(uj) as follows,

hj+1/2 =

{
f(uj+1) for: f ′(uj) < 0

f(uj) for: f ′(uj) ≥ 0

hj−1/2 =

{
f(uj) for: f ′(uj−1) < 0

f(uj−1) for: f ′(uj−1) ≥ 0

. (6.14)

In the specific case of the example:

• xj < 0:

un+1
j = unj −

∆t

∆x

(
f(unj+1)− f(unj )

)
(6.15)

• xj > 0:

un+1
j = unj −

∆t

∆x

(
f(unj )− f(unj−1)

)
(6.16)

The scheme “decides” on its own which direction of the difference to take.
However, this would not work for shocks, for which it is better to take central
differences (i.e.: use xj+1 and xj−1). An example is the (conditionally
stable) Lax–Friedrichs scheme:

un+1
j =

1

2

(
unj−1 + unj+1

)
︸ ︷︷ ︸

central space

− ∆t

2∆x

(
f(unj+1)− f(uj−1n)

)︸ ︷︷ ︸
central space

. (6.17)

�



6.3 Method of the modified differential equation 47

Figure 6.2: Idea of conservative form and flux splitting for grid point j.

A more general way of expressing the same idea can be obtained with the
so-called flux splitting, as illustrated in Fig. 6.2. For the case of advection of
a scalar φ with velocity a, we can define two speeds using the (local) speed
aj ,

a+
j = max(aj , 0) =

1

2
(aj + |aj |)

a−j = min(aj , 0) =
1

2
(aj − |aj |)

, (6.18)

where for positive a only a+ = a and a− = 0, and associated fluxed

f+
j = a+

j uj , f−j = a−j uj . (6.19)

The two fluxes h for the conservative form (6.13) then become

hj−1/2 = f+
j−1 + f−j , (6.20)

hj+1/2 = f+
j + f−j+1 . (6.21)

6.3 Method of the modified differential equation

It is an alternative and more intuitive way to determine stability and be-
haviour of a numerical scheme. Consider the truncation error:

T (xj , t
n) = P [v]xj ,tn − PN [vN ]xj ,tn (6.22)

Example 6.4 First-order scheme: Let consider the FTBS and for the
advection equations:

un+1
j − unj

∆t
= −a

unj − unj−1

∆x
(6.23)

T (xj , t
n) =

1

2
a∆x(1− σ)uxx + σ(∆x2, ∆t2) (6.24)
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Figure 6.3: Effect of a diffusive term on a top-hat initial conditions.

If we retain this term, we see that we actually solve for:

ut + aux =
1

2
a∆x(1− σ)︸ ︷︷ ︸

νnum

uxx + σ(∆x2,∆t2) , (6.25)

which is an advection/diffusion equation, whereas the equation was:

ut + aux = 0 (6.26)

The additional term resemble a viscosity, producing smoothing for νnum > 0:

νnum =
1

2
a∆x(1− σ) ≥ 0 (for a > 0) , (6.27)

⇒ σ ≤ 1 (6.28)

What does this smoothing mean (see Fig. 6.3)?

• the smaller σ, the more dissipation;

• if σ = 1 : νnum = 0, exact solution;

• if σ > 1 : νnum < 0, inverse heat equation (blow-up!)

�

Example 6.5 Second-order scheme: In the following example, we con-
struct a 2nd-order scheme. Start with FTCS:

un+1
j − unj

∆t
= − a

2∆x

(
unj+1 − unj−1

)
(6.29)

The modified PDE is:

ut + aux = −1

2
a2∆tuxx , (6.30)
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Figure 6.4: Effect of a dispersive term on a top-hat initial conditions.

unconditionally unstable due to negative diffusion. However, if we add a
term this leading error term:

un+1
j − unj

∆t
=

a

2∆x

(
unj+1 − unj−1

)
+

1

2
a2∆t

∆x2

unj−1 − 2unj + unj+1

(6.31)

we get the Lax–Wendroff scheme (2nd order in time and space). In this case,
the modified PDE is:

ut + aux =
1

6
a∆x2(σ2 − 1)uxxx + . . . , (6.32)

where σ = a∆t
∆x , which is stable for |σ| ≤ 1. Since the leading term in

the modified PDE is ∝ uxxx, the numerical solution will have a dispersive
behaviour. �

“Dispersion” means that waves with different frequency have different
propagation speed. As a discontinuity contains a broad spectrum, the time
advancement leads to spurious oscillations when the numerical error has a
dispersive behaviour. This is schematically illustrated in Fig. 6.4.

6.4 Non-linear stability

We have described earlier the von Neumann analysis: since it employed the
Fourier transform and superposition, strictly it can be applied only for the
linear problems. Let consider a non-linear problem:

ut + f(u)x = 0 (6.33)

We can define the quasi-linear form as:

ut + f ′(u)︸ ︷︷ ︸
non-constant

·ux = 0 (6.34)

To perform a non-linear stability analysis, we can linearise the problem, i.e.
assume

u = U + u′ , (6.35)
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where U is a constant and u′ a small perturbation. Substitute equation
(6.35) into equation (6.33) yields

Ut + u′t + f(U + u′)x = 0 . (6.36)

Since U is constant, Ut = 0 and, since we assume u′ � U , it is possible to
use the Taylor expansion to express the term with the x derivative:

f(U + u′)x = f(U)x + f ′(U)u′x +O(u′2) (6.37)

f(U)x = 0, therefore, at first order in u′:

u′t + f ′(U)︸ ︷︷ ︸
constant = a

u′x = 0 (6.38)

The von Neumann analysis can be performed on the linearised problem
(6.38).

Example 6.6 Upwind scheme: For the (linear) advection equation (speed
a) discretised with a first order upwind scheme (FTBS), we found the fol-
lowing stability limit ∣∣∣∣a∆t

∆x

∣∣∣∣ ≤ 1 . (6.39)

Using the above linearisation, one gets∣∣∣∣f ′(U)
∆t

∆x

∣∣∣∣ ≤ 1 . (6.40)

In practise, assume that u′ is small:

f ′(U) ≈ f ′(U + u′) = f ′(u) (6.41)

then, e.g. for the current upwind scheme, use:∣∣∣∣f ′(u)∆t

∆x

∣∣∣∣ ≤ 1 (6.42)

as stability bound. Note that f ′(u) varies in time and space, so the actual
condition is for each time step,

∆t ≤ min
j

∆xj
|f ′(uj)|

=
∆x

maxj |f ′(uj)|
, (6.43)

with the last equality for cases with constant grid spacing ∆x. �
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Example 6.7 Burgers equation:

f(u) =
1

2
u2 f ′(u) = u (6.44)

with the above upwind scheme of first order and constant ∆x

∆t ≤ ∆x

|max(u)|
. (6.45)

�

Example 6.8 Second-order scheme: We consider now the MacCor-
mack scheme which is simpler to implement than Lax-Wendroff (and very
popular during 70s–80s). It is a two-steps scheme, also so-called Predictor-
Corrector scheme:u

∗
j = unj − λ

(
f(unj+1)− f(unj )

)
forward predictor

un+1
j = 1

2(unj + u∗j )− 1
2λ
(
f(u∗j )− f(u∗j−1)

)
backward correction

(6.46)
Here, λ = ∆t/∆x. For the linear advection equation (ut + aux = 0), the
MacCormack scheme is identical to the Lax–Wendroff scheme, i.e.,

σ =

∣∣∣∣a∆t

∆x

∣∣∣∣ ≤ 1 . (6.47)

Therefore, the non-linear stability is simply

∆t = σ
∆x

max |f ′(u)|
, with: σ < 1 . (6.48)

�

6.5 Example: Burgers equation

In this section, we present the results of time-integrating the Burgers equa-
tion in a domain x = 0 . . . 10 with the piecewise constant initial conditions
as in Fig. 6.5. The following conservative numerical schemes are used:

• Upwind scheme with automatic detection of upwind direction (flux
splitting)

• Lax–Friedrichs scheme

• Lax–Wendroff scheme

• Flux limiting scheme with Van Leer limiter.



6.5 Example: Burgers equation 52

A snapshot of the solutions at t = 5 is shown in Fig. 6.6. It is quite ob-
vious that the Lax–Friedrichs scheme is very diffusive, and all the shocks
are completely removed. The (second-order) Lax-Wendroff scheme shows
significant wiggles (oscillations) just ahead of discontinuities. However, the
shock speed is predicted correctly. The first-order upwind scheme does not
show any wiggles.

0 1 2 3 4 5 6 7 8 9 10

x

-1

-0.5

0

0.5

1

1.5

2

u

t=0

Figure 6.5: Initial condition at t = 0 for the Burgers equation.

The flux-limited scheme using the van Leer limiter switches automati-
cally between the Lax–Wendroff and the upwind scheme depending on the
local smoothness of the solution. As such this scheme attempts to com-
bine the advantages of both the low and higher-order scheme. Therefore, it
provides the most accurate prediction to the solution over the whole time
evolution (see Fig. 6.7) with minimal dissipation, but yet without spurious
oscillations. In particular, the prediction of the various shock speeds is most
accurate.
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0 1 2 3 4 5 6 7 8 9 10

x

-1

-0.5

0

0.5

1

1.5

2
u

t=4.995

Lax-Friedrichs

Lax-Wendroff

upwind

FluxLimiters

Figure 6.6: Snapshot at t = 5 for the Burgers equation, started from initial
conditions as in Fig. 6.5.

Figure 6.7: Space–time diagram for the Burgers solution from the initial
condition shown in Fig. 6.5; colours from −1 (blue) till 2 (yellow).



Dispersive and dissipative errors 54

7 Dispersive and dissipative errors

Figure 7.1: Dispersive and dissipative square wave.

As discussed before, the advection of a top-hat signal is shown in Fig.
7.1. To further understand these phenomena, let us consider a single wave

u(x, t) = û ei(kx−ωt) . (7.1)

The wave length L and the period T are defined:

L =
2π

k
T =

2π

ω
(7.2)

Phase velocity cp and the group velocity cg are:

cp =
L

T
=
ω

k
cg =

∂ω

∂k
(7.3)

Example 7.1 Advection equation: For the advection equation ut +
λux = 0:

ûei(kx−ωt)(−iω) = −λûei(kx−ωt)(ik) ⇒ ω = λk (7.4)

This is called dispersion relation:

cp = λ = cg (7.5)

waves move with speed cp = λ, as expected from (7.1). �
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Example 7.2 Heat equation: For heat equation ut = νuxx

ω = −iνk2 ⇒ u = ûeikx e−νk
2t (7.6)

the wave propagation:

cp = −iνk cg = −2iνk (7.7)

which leads to exponential decay for ν > 0. �

Example 7.3 Dispersive wave: For a third-order equation,

ut = αuxxx ⇒ ω = αk3 (7.8)

one gets the following dispersion relation:

cp = αk2 , cg = 3αk2 = 3cp (7.9)

and thus
u = ûei(kx−αk

3t) = ûeik(x−cpt) . (7.10)

Here, cp depends on k, such that waves with shorter wave lengths are trav-
elling faster. �

The modified equation identifies the leading error term, responsible for
the behaviour of the solution:

• upwind first order (FTBS): diffusive;

• Lax–Wendroff, second order: dispersive.

7.1 Artificial viscosity

Idea: control wiggles with controlled diffusion, i.e. artificial viscosity. In the
proximity of shocks oscillations may appear when a second-order scheme is
used. Reasons:

• dispersion of the wave propagation;

• resolution of the shock (also for steady shocks).

ut + f(u)x = εuxx , ε ≈ ∆x (7.11)

to replace ut + f(u)x = 0. The conservative form (for ε constant) is:

ut + (f(u)− εux)x︸ ︷︷ ︸
f̃x

= 0 ⇒ ut + f̃(u)x = 0 (7.12)

where f̃ is a modified flux function. Because ε ≈ ∆x, the accuracy is reduced
to first order. Therefore, it is added only around shocks (locally).
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Example 7.4 Stability of viscous term: Consider the stability analysis
of a second-order derivative, on the example of the diffusion equation:

ut = εuxx (7.13)

with central scheme for uxx:

un+1
j = unj +

α∆t

∆x2
(uj+1 − 2uj + uj−1) (7.14)

The von Neumann analysis gives:

ε∆t

∆x2
≤ 1

2
(7.15)

• stability very sensitive to refinement in ∆x because of the square;

• usually implicit (→ stable) schemes are used for viscous terms.

�

7.2 Shock tube

The so-called Sod shock tube is a simple but physical application of the
one-dimensional Euler equation. It is named after Gary A. Sod, and was
introduced in his JCP paper in 1978. Let us consider a tube, modelled
as a one-dimensaionl domain, divided into two portions by a removable
diaphragm. The fluid is initially at rest in both portions of the domain, i.e.
v0 = v1 = 0, but the pressure is higher in the driver section than in the
driven section: p0 > p1. A sketch is given in Fig. 7.2.

Once the membrane is removed, the system needs to reach a new position
of equilibrium. The governing equations of the system are:

∂

∂t

 ρ
ρu
E

+
∂

∂x

 ρu
ρu+ p

(E + p)u

 = 0 (7.16)

The system has three characteristics

λ1 = u λ2,3 = u± c . (7.17)

Shock tubes are used as gas-dynamics instruments to measure different gas
properties at high speed and high temperature. They are also used as a test
and validation problem for numerical methods.

At t = 0 the fluid is at rest, see Fig. 7.3. At t > 0, once the membrane
is removed (Fig. 7.4):

• between Regions 1 and 2 a rarefaction wave propagates to the left,
decreasing pressure and density (smooth interface).
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Figure 7.2: Initial conditions for the shock tube problem.

Figure 7.3: Shock tube (top) initial condition and (bottom) after removing
the membrane.

• Regions 2 and 3 are separated by a contact discontinuity moving to
the right. The pressure is constant, but not the density. This interface
moves with the characteristic speed (not shock speed!)

• Between regions 3 and 4 a shock in both p and ρ forms, and propagates
with the shock speed.

The simplification we may use is isentropic flow (see homeworks),

p

ργ
= K γ = 1.4 . (7.18)
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Figure 7.4: Evolution of the variables in the shock tube as a function of time
and space.

Then we get (
ρ
ρu

)
t

+

(
ρu

ρu2 + p

)
x

= 0 , λ1,2 = u± c (7.19)

In the isentropic approximation, there will be no contact discontinuity (see
also the eigenvalues) because the ratio p/ρ is fixed. We only get rarefaction
wave and shock (not physical shocks → weak shock, otherwise entropy had
to increase).
Initial and boundary conditions: At t = 0 the fluid is at rest, so u = 0,
and p/ργ = K. Also, p0, T0 and p1 are given and:

ρ0 =
p0

RT0

p1

ργ1
=

p0

γργ0
= K (7.20)

The boundary conditions need to be specified at each boundary, and their
number needs to be at least equal to the number of in-going characteristics
(see Section 7.3 below). The characteristics are the eigenvalues of F ′,

u =

(
ρ
u

)
F ′ =

(
u ρ

c2/ρ u

)
⇒ λ1/2 = u± c , (7.21)

where c is the local speed,

c2 =
γp

ρ
= γK · ργ−1 . (7.22)
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Figure 7.5: Characteristics in the shock tube for the isentropic approxima-
tion (i.e. only two variables/characteristics) at x = 0 (similarly for x = L).

Figure 7.6: Boundary condition for a hyperbolic problem.

Look at the two walls located at x = 0 and x = L, where no-slip/no-
penetration conditions apply (Fig. 7.5) ,

u = 0 λ1,2 = ±c . (7.23)

The unknowns are ρ and ρu. The physical boundary condition is ρu = 0.
There are however no physical condition from the boundary for ρ. The
numerical boundary condition for ρ are thus obtained by extrapolation from
inside the flow domain. The simplest way is

ρ(x = 0) = ρ0 = ρ1 (zeroth order extrapolation). (7.24)

The formal derivation is based on Riemann invariants, as discussed further
down in Section 8.

7.3 Boundary condition

For systems of conservation laws, there are conditions on the boundary
conditions to be fulfilled in order for the problem to be well-posed. The
number of boundary condition that have to be prescribed needs to be equal
to the number of in-going characteristics, as illustrated in Fig. 7.6.
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Figure 7.7: Boundary conditions for Euler in case of subsonic inflow and
outflow.

Example 7.5 Hyperbolic problem:

ut +A(U)x = 0 0 ≤ x ≤ 1 (7.25)

A ∈ R3×3 and we have 3 real eigenvalues λi. Assume λ1, λ2 > 0, λ3 < 0.
At x = 0, λ1 and λ2 are going into the domain (Fig. 7.7):

• two boundary conditions have to be given;

• only two values can be prescribed at x = 0.

The third variable will be given/determined by the solution inside the do-
main. At x = 1, the opposite situation occurs: only one boundary condition
on the third variables can be prescribed. This mathematical constraint
causes problems, when numerical boundary condition are needed. Numeri-
cal boundary conditions can be set by extrapolating from the inside of the
domain (see also Riemann Invariants). �

Example 7.6 Euler with subsonic inflow/outflow : The previous ex-
ample directly tells us what happens in the case of the Euler equations
with the eigenvalues λ1/2 = u ± c and λ3 = u. For subsonic inflow/outflow
(u < c) we get the situation illustrated in Fig. 7.7, i.e. two characteristics
travelling to the right, and one travelling to the left. In the supersonic case
u > c, conversely, all characteristics are to the right, which means that three
conditions at the inflow need to be given, but no physical condition at the
outflow. �
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8 Riemann Invariants

We will now in more detail study systems of conservation laws. Consider
the general form

U t +A · Ux = 0 A ∈ Rm×m , U ∈ Rm . (8.1)

The eigenvalues of A are real, thus the system can be diagonalised via:

A = RΛR−1 (8.2)

where R is the matrix containing the eigenvectors as columns, and Λ is the
diagonal matrix with eigenvalues on diagonal.

Avi = λivi

A[v1 v2 ...] = [λ1v1 λ2v2 ...] = RΛ

A ·R = R · Λ ⇒ A = RΛR−1

(8.3)

Multiplying (8.1) with R−1:

R−1U t︸ ︷︷ ︸
V t

+R−1AR︸ ︷︷ ︸
Λ

·R−1 Ux︸ ︷︷ ︸
V x

= 0 (8.4)

Define: characteristic variables:

V = R−1 · U ⇒ V t + Λ · V x = 0 (8.5)

The equations are independent (decoupled) since Λ is diagonal. Same as:(
vP
)
t
+ λP

(
vP
)
x

= 0 (8.6)

which are m linear advection equation p = 1 . . . m.
Solution: we know that vP constant along dx

dt = λP . Therefore, vP are called
characteristic variables. Tracking these solutions is helpful when analysing
the solution to conservation laws.
The initial condition is:

V 0 = R−1U0 (8.7)

The solution is:

u(x, t) = RV (x, t) =


...

...
r1 r2 . . .
...

...

 ·
v1

v2
...

 (8.8)

Solution:

u(x, t) =

m∑
p=1

vp(λ, t)rp =

m∑
p=1

vp0(x− λpt)rp (8.9)
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This means that in each point in space the solution depends on a super-
position of solutions that are given by vP . Information coming from m
characteristics given by the eigenvalues of A.

u = αv1 + βv2 + γv3 (8.10)

where α, β and γ given by eigenvectors. Different components of the solution

Figure 8.1: Schematic representation of the characteristics for a 3×3 system.

are constant along the characteristic lines, see also Fig. 8.1,

v1 along λ1

v2 along λ2

v3 along λ3

. (8.11)

Example 8.1 System of conservation laws:

∂

∂t
U +A

∂U

∂x
= 0 (8.12)

where:

U =

(
u1

u2

)
A =

(
a b
b a

)
(8.13)

The domain is 0 ≤ x ≤ 1.
The eigenvalues are λ1,2 = a± b and the eigenvectors are r1,2 = {1, ±1}:

R =

(
1/2 1/2
1/2 −1/2

)
R−1

(
1 1
1 −1

)
Λ =

(
a+ b 0

0 a− b

)
(8.14)

Characteristics variables:

V = R−1 · U =

(
u1 + u2

u1 − u2

)
=

(
v+

v−

)
⇒ (8.15)

⇒

{
v+
t + (a+ b)v+

x = 0

v−t + (a− b)v−x = 0
(8.16)
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Figure 8.2: Boundary conditions for the hyperbolic problem given in the
example. Left: 0 < b < a, right: 0 < a < b.

Along the characteristics Ch+:

dx

dt
= a+ b :

dv+

dt
= 0 (8.17)

and along Ch−:
dx

dt
= a− b :

dv−

dt
= 0 (8.18)

The different possibilities for the boundary conditions are shown in
Fig. 8.2. The following cases can be distinguished:

• 0 < b < a ⇒ both λ1,2 > 0 ⇒ Ch+ and Ch− go to the right.
Two conditions at x = 0, none at x = 1.

• 0 < b < a ⇒ Ch+ towards right (λ1) and Ch− towards left (λ2)
one conditions at each boundary.

In the latter case, at x = 0:

v+(0, t) = α0(t)v−(0, t) + β0(t) (8.19)

at x = 1:
v+(1, t) = α1(t)v+(1, t) + β1(t) (8.20)

to be well-posed αi, βi are constant or functions of time. If we set, for
example:

u1(0, t) =
1

2
β0(t) at: x = 0

u2(0, t) =
1

2
β1(t) at: x = 1

(8.21)

For the characteristic variables:

V 0 = R−1 U

v+(x = 0) = u1(0, t) + u2(0, t) = −v−(x = 0) + β0(t)

v−(x = 0) = u1(1, t) + u2(1, t) = v+(x = 1)− β1(1)

(8.22)

where v− = u1 − u2 and v+ = u1 + u2. The boundary conditions are a
combination of given values and computed ones. �
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Example 8.2 Euler equations: Consider the non-linear, isentropic, com-
pressible 1D Euler equations:(

ρ
u

)
t

+

(
u ρ

Kγργ−2 u

)
·
(
ρ u

)
x

= 0 ⇒ (8.23)

with Kγργ−2 = c2/ρ, c2 = Kγρ2α where α = (γ − 1)/2:

⇒ A =

(
u ρ

Kγργ−2 u

)
(8.24)

determine type:

det(A− λI) = 0 ⇒ λ1,2 = u± c (8.25)

Thus:

v1 =

(
ρ/2c
1/2

)
v2 =

(
−ρ/2c

1/2

)
(8.26)

Diagonalise:

Λ =

(
u+ c 0

0 u− c

)
= R−1AR (8.27)

with:

R =
(
v1 v2

)
and R−1 =

(
c/ρ 1
−c/ρ 1

)
(8.28)

Therefore, the characteristic form of (8.23) is:

∂Z

∂t
+ Λ

∂Z

∂x
= 0 (8.29)

In principle this is a decoupled system, however due to non-linearity there
is coupling through Λ. The new state vector Z is:

ωt +Aωx = 0 , ω =

(
ρ
u

)
(8.30)

RΛR−1 = A ⇒ ωt +RΛR−1ωx = 0 (8.31)

R−1ωt︸ ︷︷ ︸
Zt

+Λ T−1ωx︸ ︷︷ ︸
Zx

= 0 (8.32)

[Zt]i =
∂Zi
∂ωj

[ωt]j ⇒ ∂Zi
∂ωj

=
[
R−1

]
ij

(8.33)
∂Z1

∂ρ
=
c

ρ
,

∂Z2

∂ρ
= − c

ρ

∂Z1

∂u
= 1 ,

∂Z2

∂u
= 1

⇒ Z = u± c

α
(8.34)
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The two solutions Z are the Riemann invariants for the given problem. We
know that along the characteristics u±c the quantities u±c/α are constant:(

u+ c/α
u− c/α

)
t

+

(
u+ c 0

0 u− c

)(
u+ c/α
u− c/α

)
x

= 0 (8.35)

The relevance is for specifying so-called characteristic boundary conditions.
For instance, in the shock tube on the right boundary, there are 2 charac-
teristics u± c and one physical condition is imposed (u = 0). The numerical
condition needs to be extrapolated from the inside:

Z1 = u+
c

α
= u+ (

√
Kγ/α)ρα (8.36)

is constant along:
dx

dt
= u+ c (8.37)

At the wall u = 0, thus:

dx

dt
= c =

√
Kγρα ⇒ Z1 = const =

(√
Kγ/α

)
ρα (8.38)

A zeroth order condition is ρ = const, but higher order is of possible (and
desirable for high resolution schemes). �
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9 Analysis of time integration

9.1 Analysis in one dimension

Consider advection-diffusion equation:

∂u

∂t
+ a

∂u

∂x︸︷︷︸
advection

=
1

Re

∂2u

∂x2︸ ︷︷ ︸
diffusion

FTCS for all terms (9.1)

Let us consider the terms independently (central differences)

• advection: CFL condition (only necessary):

σ =
a∆t

∆x
≤ 1 (9.2)

• diffusion:

β =
1

Re

∆t

∆x2
≤ 1

2
(9.3)

Considering the two terms together leads to (see study questions):

σ2 ≤ 2β ≤ 1 ⇒


β ≤ 1

2
⇔ ∆t ≤ 1

2
∆x2 ·Re

σ2

β
≤ 2 ⇔ ∆t ≤ 2

Rea2
indep. of ∆x!

(9.4)

• for low Re: viscous time-step limit ;

• for high Re: the convection is stabilised by viscosity (remember, for
Re→∞ the scheme is unstable!)

9.2 Analysis in two dimensions

∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
=

1

Re
∆u (9.5)

CFL condition (only necessary condition), assuming ∆x = ∆y:

σx + σy ≤ 1 ⇒ ∆t ≤
(
|ax|
∆x

+
|ay|
∆y

)−1

=
∆x

|ax|+ |ay|
(9.6)

Diffusion:

βx + βy ≤
1

2
⇒ ∆t ≤ 1

2
Re

(
1

∆x2
+

1

∆y2

)−1

=
1

4
Re∆x2 (9.7)

Combination:
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Figure 9.1: Sketch of the 2D stencil to determine the CFL condition.

• viscous limit:

βx + βy ≤
1

2
(9.8)

• independent of ∆x, ∆y:

σ2
x

βx
+
σ2
y

βy
≤ 2 (9.9)

In practise: (test in the code!)

• viscous limit is necessary and sufficient (hard limit for low Re);

• CFL condition: only necessary, but easy to check;

• combined condition very strict (too strict) but necessary and sufficient.

• non-linearity: evaluate ax = |u|max, ay = |v|max

9.3 Derivation 2D CFL condition

According to the CFL condition, the domain of dependence of PDE needs to
be fully contained within the domain of dependence of the numerical stencil.
Let us consider the central approximation of the 2D advection equation, see
Fig. 9.1:

∂u

∂t
+ ax

∂u

∂x
+ ay = 0 (9.10)

From the definition:

∆t
|ax|
∆x

+ ∆t
|ay|
∆y
≤ 1 (9.11)

Similar for higher dimensions:

∆t
∑ |ai|

∆xi
≤ 1 (9.12)
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9.4 Stability of the diffusion equation in 2D

Recall the one-dimensional analysis for the diffusion equation,

1D:
∂u

∂t
= ν

∂2u

∂x2
FTCS (9.13)

un+1
j − unj

∆t
=

ν

∆x2

(
unj+1 − 2unj + unj−1

)
. (9.14)

von Neumann analysis: unj = ûnke
ikαxj .

ûn+1
k = ûnk +

ν∆t

∆x2

(
eikα∆x + e−ikα∆x

)
︸ ︷︷ ︸

2 cosφk−2, φk=kα∆x

ûnk (9.15)

|Ĝk| ≤ 1 ⇒ −1 ≤ 1 +
2ν∆t

∆x2
(cosφk − 1) ≤ 1︸ ︷︷ ︸

always true

⇒ (9.16)

⇒ 2 ≥ 2ν∆t

∆x2
(1− cosφk) (9.17)

For cosφk = −1:
1

2
≥ ν∆t

∆x2︸︷︷︸
β

. (9.18)

This is the final stability limit for the diffusion equation in one dimension,

ν∆t

∆x2
= β ≤ 1

2
. (9.19)

We can now do a similar analysis in two dimensions using the von Neu-
mann analysis for a central scheme.

2D:
∂u

∂t
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(9.20)

un+1
ij − unij

∆t
= ν

(
uni−1,j − 2unij + uni+1,j

∆x2
+
uni,j−1 − 2uni,j + uni,j+1

∆y2

)
(9.21)

Since:
unij = ûnkle

ikαxieilβyj , φk = kα∆x , φl = lβ∆y (9.22)

It is possible to write:

ûn+1
kl = ûnkl +

ν∆t

∆x2
(2 cosφk − 2)ûnkl +

ν∆t

∆y2
(2 cosφl − 2)ûnkl (9.23)
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Thus:

Ĝ = 1 + 2
ν∆t

∆x2︸︷︷︸
βx

(cosφk − 1) + 2
ν∆t

∆y2︸︷︷︸
βy

(cosφl − 1) (9.24)

As above:

βx + βy ≤
1

2
(9.25)

For ∆x = ∆y → βx = βy = β:

β =
ν∆t

∆x2
≤ 1

4
(9.26)

This result should be compared to β ≤ 1/2 obtained in 1D.
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10 Non-dimensionalisation

In this section, we demonstrate how to non-dimensionalise the incompress-
ible Navier–Stokes equations for two cases; a regular case with advection
velocity and length scale, and a convection-driven case (Rayleigh–Bénard
convection).

10.1 Advection-driven case

Let us consider the governing incompressible Navier–Stokes equations for
the case of constant density and non-uniform temperature,

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ ρfi , (10.27)

ρcp
DT

Dt
= k

∂2T

∂xj∂xj
, (10.28)

∂ui
∂xi

= 0 , (10.29)

where the various symbols have the following dimensions:

• the velocity, u is [m/s],

• the density, ρ is [kg/m3],

• the pressure p is [N/m2], where N=kg m/s2,

• the temperature T is [K],

• the dynamic viscosity µ is [N s/m2],

• the thermal conductivity k is [W/m K], where W=kg m2/s3, and

• the specific heat capacity, cp is [J/kg K].

Furthermore, it is convenient to introduce

• the kinematic viscosity,

ν =
µ

ρ
, (10.30)

which is [m2/s], and

• the thermal diffusivity,

κ =
k

ρcp
, (10.31)

which is [m2/s] as well.
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Let us introduce characteristic (dimensional) length Lref , velocity Uref , den-
sity ρ0, temperature Tref and temperature difference ∆T , and non-dimensional
quantities with an asteriks:

ui = u∗iUref ,

xj = x∗jLref ,

p = p∗ρU2
ref ,

t = t∗Lref/Uref ,

θ∗ =
T − Tref

∆T
⇒ T = Tref + ∆Tθ∗

fi = f∗i U
2
ref/Lref ,

(10.32)

which we can employ to write the equations in non-dimensional form. The
momentum equation becomes

Du∗i
Dt∗
·
U2

ref

Lref
= −∂p

∗

∂x∗i
· 1

ρ0
· 1

Lref
· ρ0U

2
ref + ν

∂2u∗i
∂x∗j∂x

∗
j

· Uref

L2
ref

+ f∗ ·
U2

ref

Lref

and finally
Du∗i
Dt∗

= −∂p
∗

∂x∗i
+

1

Re

∂2u∗i
∂x∗j∂x

∗
j

+ f∗i , (10.33)

where the Reynolds number is

Re =
UrefLref

ν
=

U2
ref/Lref

νUref/L
2
ref

=
advection

viscous forces
. (10.34)

The temperature equation becomes

∆T · Uref

Lref
· Dθ∗

Dt∗
= κ

∆T

L2
ref

· ∂2θ∗

∂x∗j∂x
∗
j

and finally
Dθ∗

Dt∗
=

1

Pe

∂2θ

∂x∗j∂x
∗
j

, (10.35)

where the Péclet number is

Pe = Re · Pr =
UrefLref

κ
=

advective transport rate

diffusive transport rate
. (10.36)

Note that the Prandtl number is a material property and defined as Pr =
ν/κ. Finally, the continuity equation becomes

Uref

Lref
· ∂u

∗
i

∂x∗i
= 0 ⇒ ∂u∗i

∂x∗i
= 0 . (10.37)

Under this scaling, only the Prandtl number as material property (ratio of
viscosity and diffusivity), and the Reynolds number as a dynamic control
parameter remain.
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10.2 Boussinesq approximation

Under the Boussinesq approximation, a flow with varying density can be
treated using the same incompressible (constant-density) equations as in
the previous section, by introducing a hydrostatic (background) pressure,

∂p0

∂xi
= ρ0gi , (10.38)

and pressure and density fluctuations

p = p0 + p′ and ρ = ρ0 + ρ′ , (10.39)

where the density variation can be expressed as function of temperature

ρ = ρ0[1− α(T − T0)] ⇒ ρ′ = −ρ0 · α(T − T0) , (10.40)

where α is the thermal expansion coefficient, which has unit [1/K], and
T0, ρ0 and p0 are reference values of temperature, density and pressure.
Substituting these expression into the momentum equations, one finds

ρ0
Dui
Dt

= − ∂

∂xi
(p0 + p′) + µ

∂2ui
∂xj∂xj

+ ρ0(1− α(T − T0))gi .

As part of the Boussinesq approximation, the density fluctuations are only
retained in the bouyancy term. Subtracting the hydrostatic part and drop-
ping the primes, we find that the forcing in the momentum equations be-
comes

fi = −α(T − T0)gi . (10.41)

Using the above non-dimensionalisation of the forcing term, one gets

f∗i =
Lref

U2
ref

· fi = −Lref

U2
ref

· α(T − T0)gi . (10.42)

This expression can be written as

f∗i = −Lref

U2
ref

αg∆Tθ∗
gi
g

= −Riθ∗ gi
g
, (10.43)

with the Richardson number defined as

Ri = αg
Lref

U2
ref

·∆T =
buoyancy

flow shear stress
. (10.44)
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10.3 Convection-driven case (Rayleigh–Bénard convection)

For a convection-driven case, we still need to define a velocity scale. As-
suming similarity of diffusive and advective time scales at equilibrium, we
write

Lref

Uκ
=
L2

ref

κ
⇒ Uκ =

κ

Lref
, (10.45)

where Uκ is the convective velocity scale. In this case, the Péclet number is
exactly equal to unity, yielding

Pe = 1 , Re = 1/Pr and Ri = Pr ·Ra , (10.46)

where the Rayleigh number is defined as:

Ra = αgL3
ref

∆T

νκ
=

gα∆T

νUκ/L2
ref

=
buoyancy

viscous forces
. (10.47)

The governing equations in non-dimensional form using the current scaling
are thus,

Du∗

Dt∗
=

∂p∗

∂x∗i
+ Pr

∂2u∗i
∂x∗j∂x

∗
j

−RaPr · θ∗ gi
|g|

(10.48)

Dθ∗

Dt
=

∂2θ∗

∂xj∂xj
(10.49)

∂u∗i
∂x∗i

= 0 . (10.50)

In this way, only the Prandtl number as a material property (ratio of vis-
cosity and diffusivity), and the Rayleigh number as a dynamic control pa-
rameter remain.
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11 Literature

Recommended literature for this course:

• Zikanov, O., Essential Computational Fluid Dynamics, Second edition,
Wiley, 2019.

• Hirsch, C., Numerical Computation of Internal and External Flows:
The Fundamentals of Computational Fluid Dynamics, Butterworth-
Heinemann, 2007.

• Anderson, J. D., Computational Fluid Dynamics, McGraw-Hill, 1995.

• Moin, P., Fundamentals of Engineering Numerical Analysis, Cam-
bridge University Press, 2010.
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