Experimentelle Strömungsmechanik

Bild einer Partikelsonde in Nahaufnahme und im Einsatz
Hintergrund: Partikelsonde in der Strömung, Vordergrund: Nahaufnahme einer Partikelsonde

Der Bereich beschäftigt sich mit der messtechnischen Erfassung von Strömungsvorgängen, mit besonderem Fokus auf Mehrphasensysteme. Dazu werden die am LSTM stationär installierten Großanlagen (Windkanal, Wasserkanal, brechungsindex-angepasster Ölkanal) ebenso eingesetzt, wie eigens konzipierte Versuchsanlagen vom Labormaßstab bis zu vor-industriellen Größenskalen. Zur Auslegung der Anlagen werden modernste Methoden des virtuellen Designs (CAD, FEM, CFD, DEM) eingesetzt, die Automatisierung basiert wahlweise auf eigenentwickelter Open-Source Hardware (Arduino, Raspberry Pi) oder auf industriellen Systemen (Siemens S7, National Instruments, ABB-B&R). Die eingesetzte Messtechnik umfasst traditionelle Strömungsmesstechnik und -visualisierung, moderne laseroptische Verfahren (PIV, LIF, PTV, LDA), digitale Bildverarbeitung sowie innovative Neuentwicklungen (z.B. MEMs-basierte Partikelsonden).

Bei den untersuchten Systemen liegt der Fokus zum einen auf Schäumen und Blasen, zum anderen auf dem Verhalten fester Partikel in Gas- und Flüssigströmungen. Zu den Schäumen wird im Rahmen des neu initiierten DFG-AiF Clusters „Physikalisch basiertes Management störender Schäume in Produktionsanlagen: Prävention, Inhibierung und Zerstörung“ das Auftreten und die Vermeidung von Schäumen in Produktionsprozessen der Chemie- und Lebensmittelindustrie untersucht. Dabei soll vor allem die Anwendung physikalischer Aktoren (Ultraschall, IR-Strahler, Beregnung) im Detail untersucht und für den industriellen Einsatz weiterentwickelt werden. Die experimentelle Untersuchung wird dabei ergänzt durch analytische Berechnungen der Strömungssituation und numerische Simulationen mittels Lattice-Boltzmann Methode oder Volume-of-Fluid CFD.

Bei den fest/flüssigen und fest/gasförmigen Systemen ist vor allem die Betrachtung trägheitsdominierter Partikel in den Fokus gerückt. Während sich Partikel, welche der Strömung schlupffrei folgen, mittlerweile gut durch Modelle und numerische Berechnungen abbilden lassen, befinden sich Messtechnik und Berechnungsverfahren für Anwendungen, in denen diese Bedingung aufgrund größerer Durchmesser oder höherer Masse der Partikel nicht mehr gegeben sind, erst in der Entwicklungsphase. Dies liegt an der gesteigerten Komplexität durch die zusätzlichen Kräfte relevanter Größenordnung an den Grenzflächen dieser trägheitsdominierten Partikel und deren daraus resultierenden – von der Umströmung unabhängigen – Bewegungen. Für die Messtechnische Erfassung dieser Bewegungen wurde ein miniaturisiertes System entwickelt, welches direkt in Partikel (derzeit mit minimal 10mm Durchmesser) integriert werden und aktiv die Bewegung aufzeichnen kann. Je nach Anwendungsfall können neben den Bewegungssensoren auf MEMs-Basis auch weitere Messgrößen integriert (Druck, Temperatur, GPS, etc.) bzw. eine drahtlose Kommunikation zwischen den Sensoren über Bluetooth oder WLAN realisiert werden. Das umgebende Strömungsfeld lässt sich parallel über laseroptische Methoden (PIV, PTV) erfassen und den Partikelbewegungen überlagern. Die Untersuchungen dienen einerseits der Betrachtung partikelbeladener Strömungen in industriellen und natürlichen Prozesssen, andererseits der Validierung von numerischen Methoden, beispielsweise der Kopplung von Discrete-Element Simulationen mit CFD oder partikelbasierten Kontinuumsmethoden.

Term: July 1, 2018 - June 30, 2021
Funding source: Bundesministerium für Wirtschaft und Energie (BMWE)
Project leader: ,

More information

Term: October 1, 2017 - September 30, 2019
Funding source: Bundesministerium für Wirtschaft und Energie (BMWE)
Project leader: ,

Bei der Abfüllung nicht-karbonisierter Getränke kommt es in der Praxis häufig zu einer unerwünschten Schaumbildung, die die Produktion negativ beeinflusst (Anlagen-ausbringung, Abfüllungsgenauigkeit, Pro-duktverlustmenge, Hygiene des Abfüllprozesses). So muss sich die Abfülldynamik i.d.R. dem Schaumbildungsvermögen des abzufüllenden Produktes anpassen. Das Überschäumen bestimmt auch die Notwendigkeit und Häufigkeit von Flaschen- und Anlagenreinigung inkl. des damit verbundenen Einsatzes von Energie…

More information

Term: October 1, 2015 - September 30, 2018
Funding source: AIF Arbeitsgemeinschaft industrieller Forschungsvereinigungen
Project leader: ,

Die wachsende Weltbevölkerung und der folglich wachsende Bedarf an Lebensmitteln erfordert die Erschließung neuer Rohstoffe für die Fütterung von Nutztieren, aus denen Lebensmittel tierischer Herkunft produziert werden. Als Quellen, die nicht in direkter Konkurrenz zur menschlichen Ernährung stehen, können Insekten gesehen werden. Diese sollen gezüchtet und zu Futtermitteln verarbeitet werden. Im vorliegenden Vorhaben wird folglich der gesamte Weg von Züchtung der Insekten bis zur Herstellung von Fut…

More information

Forschungsthemen:

  • Physikalisch basiertes Management störender Schäume in Produktionsanlagen: Prävention, Inhibierung und Zerstörung
    • Experimentell validierte ingenieursmäßige Optimierung gekoppelter Impuls-, Energie- und Stofftransportprozesse in Behandlungsanlagen schaumfähiger Lebensmittel
    • Charakterisierung, Simulation und Erprobung ausgewählter physikalischer Schaummanagementverfahren in großskaligen Produktionsanlagen
  • Wissensbasierte Prozessführungsstrategie zur stoffadaptiven Vermeidung des Überschäumens beim Abfüllen schaumfähiger, nicht-karbonisierter Getränke
  • Strömungsverhalten trägheitsdominierter Partikel
  • Partikelbasierte Methoden der numerischen Simulation
  • Strömungsverhalten historischer Schiffe

Der Hauptfokus dieser Forschungsgruppe liegt auf experimentellen Methoden.

2023

2022

2021

2020

2019

2018

2015

2014

2013